Computer Science > Data Structures and Algorithms
[Submitted on 29 Nov 2022]
Title:Online Unrelated-Machine Load Balancing and Generalized Flow with Recourse
View PDFAbstract:We consider the online unrelated-machine load balancing problem with recourse, where the algorithm is allowed to re-assign prior jobs. We give a $(2+\epsilon)$-competitive algorithm for the problem with $O_\epsilon(\log n)$ amortized recourse per job. This is the first $O(1)$-competitive algorithm for the problem with reasonable recourse, and the competitive ratio nearly matches the long-standing best-known offline approximation guarantee. We also show an $O(\log\log n/\log\log\log n)$-competitive algorithm for the problem with $O(1)$ amortized recourse. The best-known bounds from prior work are $O(\log\log n)$-competitive algorithms with $O(1)$ amortized recourse due to [GKS14], for the special case of the restricted assignment model.
Along the way, we design an algorithm for the online generalized network flow problem (also known as network flow problem with gains) with recourse. In the problem, any edge $uv$ in the network has a gain parameter $\gamma_{uv} > 0$ and $\theta$-units of flow sent across $uv$ from $u$'s side becomes $\gamma_{uv} \theta$ units of flow on the $v$'th side. In the online problem, there is one sink, and sources come one by one. Upon arrival of a source, we need to send 1 unit flow from the source. A recourse occurs if we change the flow value of an edge. We give an online algorithm for the problem with recourse at most $O(1/\epsilon)$ times the optimum cost for the instance with capacities scaled by $\frac{1}{1+\epsilon}$. The $(1+\epsilon)$-factor improves upon the corresponding $(2+\epsilon)$-factor of [GKS14], which only works for the ordinary network flow problem. As an immediate corollary, we also give an improved algorithm for the online $b$-matching problem with reassignment costs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.