Astrophysics > Instrumentation and Methods for Astrophysics
[Submitted on 28 Nov 2022]
Title:Using a Conditional Generative Adversarial Network to Control the Statistical Characteristics of Generated Images for IACT Data Analysis
View PDFAbstract:Generative adversarial networks are a promising tool for image generation in the astronomy domain. Of particular interest are conditional generative adversarial networks (cGANs), which allow you to divide images into several classes according to the value of some property of the image, and then specify the required class when generating new images. In the case of images from Imaging Atmospheric Cherenkov Telescopes (IACTs), an important property is the total brightness of all image pixels (image size), which is in direct correlation with the energy of primary particles. We used a cGAN technique to generate images similar to whose obtained in the TAIGA-IACT experiment. As a training set, we used a set of two-dimensional images generated using the TAIGA Monte Carlo simulation software. We artificiallly divided the training set into 10 classes, sorting images by size and defining the boundaries of the classes so that the same number of images fall into each class. These classes were used while training our network. The paper shows that for each class, the size distribution of the generated images is close to normal with the mean value located approximately in the middle of the corresponding class. We also show that for the generated images, the total image size distribution obtained by summing the distributions over all classes is close to the original distribution of the training set. The results obtained will be useful for more accurate generation of realistic synthetic images similar to the ones taken by IACTs.
Current browse context:
astro-ph.IM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.