Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Nov 2022]
Title:Siamese Object Tracking for Vision-Based UAM Approaching with Pairwise Scale-Channel Attention
View PDFAbstract:Although the manipulating of the unmanned aerial manipulator (UAM) has been widely studied, vision-based UAM approaching, which is crucial to the subsequent manipulating, generally lacks effective design. The key to the visual UAM approaching lies in object tracking, while current UAM tracking typically relies on costly model-based methods. Besides, UAM approaching often confronts more severe object scale variation issues, which makes it inappropriate to directly employ state-of-the-art model-free Siamese-based methods from the object tracking field. To address the above problems, this work proposes a novel Siamese network with pairwise scale-channel attention (SiamSA) for vision-based UAM approaching. Specifically, SiamSA consists of a pairwise scale-channel attention network (PSAN) and a scale-aware anchor proposal network (SA-APN). PSAN acquires valuable scale information for feature processing, while SA-APN mainly attaches scale awareness to anchor proposing. Moreover, a new tracking benchmark for UAM approaching, namely UAMT100, is recorded with 35K frames on a flying UAM platform for evaluation. Exhaustive experiments on the benchmarks and real-world tests validate the efficiency and practicality of SiamSA with a promising speed. Both the code and UAMT100 benchmark are now available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.