Computer Science > Artificial Intelligence
[Submitted on 23 Nov 2022]
Title:Online Dynamic Reliability Evaluation of Wind Turbines based on Drone-assisted Monitoring
View PDFAbstract:The offshore wind energy is increasingly becoming an attractive source of energy due to having lower environmental impact. Effective operation and maintenance that ensures the maximum availability of the energy generation process using offshore facilities and minimal production cost are two key factors to improve the competitiveness of this energy source over other traditional sources of energy. Condition monitoring systems are widely used for health management of offshore wind farms to have improved operation and maintenance. Reliability of the wind farms are increasingly being evaluated to aid in the maintenance process and thereby to improve the availability of the farms. However, much of the reliability analysis is performed offline based on statistical data. In this article, we propose a drone-assisted monitoring based method for online reliability evaluation of wind turbines. A blade system of a wind turbine is used as an illustrative example to demonstrate the proposed approach.
Submission history
From: Koorosh Aslansefat [view email][v1] Wed, 23 Nov 2022 19:11:33 UTC (2,095 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.