Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Nov 2022 (v1), last revised 17 Aug 2024 (this version, v2)]
Title:Can Machines Imitate Humans? Integrative Turing Tests for Vision and Language Demonstrate a Narrowing Gap
View PDF HTML (experimental)Abstract:As AI algorithms increasingly participate in daily activities, it becomes critical to ascertain whether the agents we interact with are human or not. To address this question, we turn to the Turing test and systematically benchmark current AIs in their abilities to imitate humans in three language tasks (Image captioning, Word association, and Conversation) and three vision tasks (Object detection, Color estimation, and Attention prediction). The experiments involved 549 human agents plus 26 AI agents for dataset creation, and 1,126 human judges plus 10 AI judges, in 25,650 Turing-like tests. The results reveal that current AIs are not far from being able to impersonate humans in complex language and vision challenges. While human judges were often deceived, simple AI judges outperformed human judges in distinguishing human answers from AI answers. The results of imitation tests are only minimally correlated with standard performance metrics in AI. Thus, evaluating whether a machine can pass as a human constitutes an important independent test to evaluate AI algorithms. The curated, large-scale, Turing datasets introduced here and their evaluation metrics provide new benchmarks and insights to assess whether an agent is human or not and emphasize the relevance of rigorous, systematic, and quantitative imitation tests in these and other AI domains.
Submission history
From: Mengmi Zhang [view email][v1] Wed, 23 Nov 2022 16:16:52 UTC (13,089 KB)
[v2] Sat, 17 Aug 2024 18:37:13 UTC (19,145 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.