Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Nov 2022]
Title:Generative Modeling in Structural-Hankel Domain for Color Image Inpainting
View PDFAbstract:In recent years, some researchers focused on using a single image to obtain a large number of samples through multi-scale features. This study intends to a brand-new idea that requires only ten or even fewer samples to construct the low-rank structural-Hankel matrices-assisted score-based generative model (SHGM) for color image inpainting task. During the prior learning process, a certain amount of internal-middle patches are firstly extracted from several images and then the structural-Hankel matrices are constructed from these patches. To better apply the score-based generative model to learn the internal statistical distribution within patches, the large-scale Hankel matrices are finally folded into the higher dimensional tensors for prior learning. During the iterative inpainting process, SHGM views the inpainting problem as a conditional generation procedure in low-rank environment. As a result, the intermediate restored image is acquired by alternatively performing the stochastic differential equation solver, alternating direction method of multipliers, and data consistency steps. Experimental results demonstrated the remarkable performance and diversity of SHGM.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.