Computer Science > Software Engineering
[Submitted on 24 Nov 2022 (v1), last revised 18 Apr 2024 (this version, v4)]
Title:Evaluating Search-Based Software Microbenchmark Prioritization
View PDF HTML (experimental)Abstract:Ensuring that software performance does not degrade after a code change is paramount. A solution is to regularly execute software microbenchmarks, a performance testing technique similar to (functional) unit tests, which, however, often becomes infeasible due to extensive runtimes. To address that challenge, research has investigated regression testing techniques, such as test case prioritization (TCP), which reorder the execution within a microbenchmark suite to detect larger performance changes sooner. Such techniques are either designed for unit tests and perform sub-par on microbenchmarks or require complex performance models, drastically reducing their potential application. In this paper, we empirically evaluate single- and multi-objective search-based microbenchmark prioritization techniques to understand whether they are more effective and efficient than greedy, coverage-based techniques. For this, we devise three search objectives, i.e., coverage to maximize, coverage overlap to minimize, and historical performance change detection to maximize. We find that search algorithms (SAs) are only competitive with but do not outperform the best greedy, coverage-based baselines. However, a simple greedy technique utilizing solely the performance change history (without coverage information) is equally or more effective than the best coverage-based techniques while being considerably more efficient, with a runtime overhead of less than 1%. These results show that simple, non-coverage-based techniques are a better fit for microbenchmarks than complex coverage-based techniques.
Submission history
From: Christoph Laaber [view email][v1] Thu, 24 Nov 2022 10:45:39 UTC (1,439 KB)
[v2] Tue, 23 Jan 2024 08:17:52 UTC (2,387 KB)
[v3] Tue, 12 Mar 2024 15:07:47 UTC (2,387 KB)
[v4] Thu, 18 Apr 2024 13:13:48 UTC (301 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.