Quantum Physics
[Submitted on 22 Nov 2022]
Title:Photonic Quantum Computing For Polymer Classification
View PDFAbstract:We present a hybrid classical-quantum approach to the binary classification of polymer structures. Two polymer classes visual (VIS) and near-infrared (NIR) are defined based on the size of the polymer gaps. The hybrid approach combines one of the three methods, Gaussian Kernel Method, Quantum-Enhanced Random Kitchen Sinks or Variational Quantum Classifier, implemented by linear quantum photonic circuits (LQPCs), with a classical deep neural network (DNN) feature extractor. The latter extracts from the classical data information about samples chemical structure. It also reduces the data dimensions yielding compact 2-dimensional data vectors that are then fed to the LQPCs. We adopt the photonic-based data-embedding scheme, proposed by Gan et al. [EPJ Quantum Technol. 9, 16 (2022)] to embed the classical 2-dimensional data vectors into the higher-dimensional Fock space. This hybrid classical-quantum strategy permits to obtain accurate noisy intermediate-scale quantum-compatible classifiers by leveraging Fock states with only a few photons. The models obtained using either of the three hybrid methods successfully classified the VIS and NIR polymers. Their accuracy is comparable as measured by their scores ranging from 0.86 to 0.88. These findings demonstrate that our hybrid approach that uses photonic quantum computing captures chemistry and structure-property correlation patterns in real polymer data. They also open up perspectives of employing quantum computing to complex chemical structures when a larger number of logical qubits is available.
Submission history
From: Bogdan Penkovsky [view email][v1] Tue, 22 Nov 2022 11:59:52 UTC (2,047 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.