Computer Science > Computation and Language
[Submitted on 22 Nov 2022]
Title:PESE: Event Structure Extraction using Pointer Network based Encoder-Decoder Architecture
View PDFAbstract:The task of event extraction (EE) aims to find the events and event-related argument information from the text and represent them in a structured format. Most previous works try to solve the problem by separately identifying multiple substructures and aggregating them to get the complete event structure. The problem with the methods is that it fails to identify all the interdependencies among the event participants (event-triggers, arguments, and roles). In this paper, we represent each event record in a unique tuple format that contains trigger phrase, trigger type, argument phrase, and corresponding role information. Our proposed pointer network-based encoder-decoder model generates an event tuple in each time step by exploiting the interactions among event participants and presenting a truly end-to-end solution to the EE task. We evaluate our model on the ACE2005 dataset, and experimental results demonstrate the effectiveness of our model by achieving competitive performance compared to the state-of-the-art methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.