Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 16 Nov 2022 (v1), last revised 14 Mar 2023 (this version, v2)]
Title:Delivering Speaking Style in Low-resource Voice Conversion with Multi-factor Constraints
View PDFAbstract:Conveying the linguistic content and maintaining the source speech's speaking style, such as intonation and emotion, is essential in voice conversion (VC). However, in a low-resource situation, where only limited utterances from the target speaker are accessible, existing VC methods are hard to meet this requirement and capture the target speaker's timber. In this work, a novel VC model, referred to as MFC-StyleVC, is proposed for the low-resource VC task. Specifically, speaker timbre constraint generated by clustering method is newly proposed to guide target speaker timbre learning in different stages. Meanwhile, to prevent over-fitting to the target speaker's limited data, perceptual regularization constraints explicitly maintain model performance on specific aspects, including speaking style, linguistic content, and speech quality. Besides, a simulation mode is introduced to simulate the inference process to alleviate the mismatch between training and inference. Extensive experiments performed on highly expressive speech demonstrate the superiority of the proposed method in low-resource VC.
Submission history
From: Zhichao Wang [view email][v1] Wed, 16 Nov 2022 12:06:12 UTC (535 KB)
[v2] Tue, 14 Mar 2023 01:42:35 UTC (536 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.