Computer Science > Computational Geometry
[Submitted on 10 Nov 2022]
Title:A Closer Cut: Computing Near-Optimal Lawn Mowing Tours
View PDFAbstract:For a given polygonal region $P$, the Lawn Mowing Problem (LMP) asks for a shortest tour $T$ that gets within Euclidean distance 1 of every point in $P$; this is equivalent to computing a shortest tour for a unit-disk cutter $C$ that covers all of $P$. As a geometric optimization problem of natural practical and theoretical importance, the LMP generalizes and combines several notoriously difficult problems, including minimum covering by disks, the Traveling Salesman Problem with neighborhoods (TSPN), and the Art Gallery Problem (AGP).
In this paper, we conduct the first study of the Lawn Mowing Problem with a focus on practical computation of near-optimal solutions. We provide new theoretical insights: Optimal solutions are polygonal paths with a bounded number of vertices, allowing a restriction to straight-line solutions; on the other hand, there can be relatively simple instances for which optimal solutions require a large class of irrational coordinates. On the practical side, we present a primal-dual approach with provable convergence properties based on solving a special case of the TSPN restricted to witness sets. In each iteration, this establishes both a valid solution and a valid lower bound, and thereby a bound on the remaining optimality gap. As we demonstrate in an extensive computational study, this allows us to achieve provably optimal and near-optimal solutions for a large spectrum of benchmark instances with up to 2000 vertices.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.