Mathematics > Metric Geometry
[Submitted on 8 Nov 2022 (v1), last revised 9 Nov 2022 (this version, v2)]
Title:Multiple Packing: Lower Bounds via Infinite Constellations
View PDFAbstract:We study the problem of high-dimensional multiple packing in Euclidean space. Multiple packing is a natural generalization of sphere packing and is defined as follows. Let $ N>0 $ and $ L\in\mathbb{Z}_{\ge2} $. A multiple packing is a set $\mathcal{C}$ of points in $ \mathbb{R}^n $ such that any point in $ \mathbb{R}^n $ lies in the intersection of at most $ L-1 $ balls of radius $ \sqrt{nN} $ around points in $ \mathcal{C} $. Given a well-known connection with coding theory, multiple packings can be viewed as the Euclidean analog of list-decodable codes, which are well-studied for finite fields. In this paper, we derive the best known lower bounds on the optimal density of list-decodable infinite constellations for constant $L$ under a stronger notion called average-radius multiple packing. To this end, we apply tools from high-dimensional geometry and large deviation theory.
Submission history
From: Yihan Zhang [view email][v1] Tue, 8 Nov 2022 17:51:41 UTC (85 KB)
[v2] Wed, 9 Nov 2022 12:54:50 UTC (85 KB)
Current browse context:
math.MG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.