Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 4 Nov 2022 (v1), last revised 25 May 2023 (this version, v2)]
Title:Real-Time Joint Personalized Speech Enhancement and Acoustic Echo Cancellation
View PDFAbstract:Personalized speech enhancement (PSE) is a real-time SE approach utilizing a speaker embedding of a target person to remove background noise, reverberation, and interfering voices. To deploy a PSE model for full duplex communications, the model must be combined with acoustic echo cancellation (AEC), although such a combination has been less explored. This paper proposes a series of methods that are applicable to various model architectures to develop efficient causal models that can handle the tasks of PSE, AEC, and joint PSE-AEC. We present extensive evaluation results using both simulated data and real recordings, covering various acoustic conditions and evaluation metrics. The results show the effectiveness of the proposed methods for two different model architectures. Our best joint PSE-AEC model comes close to the expert models optimized for individual tasks of PSE and AEC in their respective scenarios and significantly outperforms the expert models for the combined PSE-AEC task.
Submission history
From: Sefik Emre Eskimez [view email][v1] Fri, 4 Nov 2022 22:29:00 UTC (293 KB)
[v2] Thu, 25 May 2023 23:44:51 UTC (688 KB)
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.