Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Oct 2022 (v1), last revised 2 Nov 2022 (this version, v2)]
Title:Deep Model Reassembly
View PDFAbstract:In this paper, we explore a novel knowledge-transfer task, termed as Deep Model Reassembly (DeRy), for general-purpose model reuse. Given a collection of heterogeneous models pre-trained from distinct sources and with diverse architectures, the goal of DeRy, as its name implies, is to first dissect each model into distinctive building blocks, and then selectively reassemble the derived blocks to produce customized networks under both the hardware resource and performance constraints. Such ambitious nature of DeRy inevitably imposes significant challenges, including, in the first place, the feasibility of its solution. We strive to showcase that, through a dedicated paradigm proposed in this paper, DeRy can be made not only possibly but practically efficiently. Specifically, we conduct the partitions of all pre-trained networks jointly via a cover set optimization, and derive a number of equivalence set, within each of which the network blocks are treated as functionally equivalent and hence interchangeable. The equivalence sets learned in this way, in turn, enable picking and assembling blocks to customize networks subject to certain constraints, which is achieved via solving an integer program backed up with a training-free proxy to estimate the task performance. The reassembled models, give rise to gratifying performances with the user-specified constraints satisfied. We demonstrate that on ImageNet, the best reassemble model achieves 78.6% top-1 accuracy without fine-tuning, which could be further elevated to 83.2% with end-to-end training. Our code is available at this https URL
Submission history
From: Xingyi Yang [view email][v1] Mon, 24 Oct 2022 10:16:13 UTC (11,891 KB)
[v2] Wed, 2 Nov 2022 16:16:28 UTC (11,884 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.