Computer Science > Computation and Language
[Submitted on 28 Oct 2022]
Title:Debiasing Masks: A New Framework for Shortcut Mitigation in NLU
View PDFAbstract:Debiasing language models from unwanted behaviors in Natural Language Understanding tasks is a topic with rapidly increasing interest in the NLP community. Spurious statistical correlations in the data allow models to perform shortcuts and avoid uncovering more advanced and desirable linguistic features. A multitude of effective debiasing approaches has been proposed, but flexibility remains a major issue. For the most part, models must be retrained to find a new set of weights with debiased behavior. We propose a new debiasing method in which we identify debiased pruning masks that can be applied to a finetuned model. This enables the selective and conditional application of debiasing behaviors. We assume that bias is caused by a certain subset of weights in the network; our method is, in essence, a mask search to identify and remove biased weights. Our masks show equivalent or superior performance to the standard counterparts, while offering important benefits. Pruning masks can be stored with high efficiency in memory, and it becomes possible to switch among several debiasing behaviors (or revert back to the original biased model) at inference time. Finally, it opens the doors to further research on how biases are acquired by studying the generated masks. For example, we observed that the early layers and attention heads were pruned more aggressively, possibly hinting towards the location in which biases may be encoded.
Submission history
From: Johannes Mario Meissner [view email][v1] Fri, 28 Oct 2022 11:57:55 UTC (6,314 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.