Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Oct 2022]
Title:Detection of Real-time DeepFakes in Video Conferencing with Active Probing and Corneal Reflection
View PDFAbstract:The COVID pandemic has led to the wide adoption of online video calls in recent years. However, the increasing reliance on video calls provides opportunities for new impersonation attacks by fraudsters using the advanced real-time DeepFakes. Real-time DeepFakes pose new challenges to detection methods, which have to run in real-time as a video call is ongoing. In this paper, we describe a new active forensic method to detect real-time DeepFakes. Specifically, we authenticate video calls by displaying a distinct pattern on the screen and using the corneal reflection extracted from the images of the call participant's face. This pattern can be induced by a call participant displaying on a shared screen or directly integrated into the video-call client. In either case, no specialized imaging or lighting hardware is required. Through large-scale simulations, we evaluate the reliability of this approach under a range in a variety of real-world imaging scenarios.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.