Computer Science > Hardware Architecture
[Submitted on 26 Oct 2022]
Title:DEEPFAKE CLI: Accelerated Deepfake Detection using FPGAs
View PDFAbstract:Because of the availability of larger datasets and recent improvements in the generative model, more realistic Deepfake videos are being produced each day. People consume around one billion hours of video on social media platforms every day, and thats why it is very important to stop the spread of fake videos as they can be damaging, dangerous, and malicious. There has been a significant improvement in the field of deepfake classification, but deepfake detection and inference have remained a difficult task. To solve this problem in this paper, we propose a novel DEEPFAKE C-L-I (Classification-Localization-Inference) in which we have explored the idea of accelerating Quantized Deepfake Detection Models using FPGAs due to their ability of maximum parallelism and energy efficiency compared to generalized GPUs. In this paper, we have used light MesoNet with EFF-YNet structure and accelerated it on VCK5000 FPGA, powered by state-of-the-art VC1902 Versal Architecture which uses AI, DSP, and Adaptable Engines for acceleration. We have benchmarked our inference speed with other state-of-the-art inference nodes, got 316.8 FPS on VCK5000 while maintaining 93\% Accuracy.
Submission history
From: Omkar Bhilare Mr. [view email][v1] Wed, 26 Oct 2022 14:22:05 UTC (2,006 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.