Computer Science > Computer Vision and Pattern Recognition
[Submitted on 21 Oct 2022 (v1), last revised 22 Nov 2022 (this version, v2)]
Title:Improving the Anomaly Detection in GPR Images by Fine-Tuning CNNs with Synthetic Data
View PDFAbstract:Ground Penetrating Radar (GPR) has been widely used to estimate the healthy operation of some urban roads and underground facilities. When identifying subsurface anomalies by GPR in an area, the obtained data could be unbalanced, and the numbers and types of possible underground anomalies could not be acknowledged in advance. In this paper, a novel method is proposed to improve the subsurface anomaly detection from GPR B-scan images. A normal (i.e. without subsurface objects) GPR image section is firstly collected in the detected area. Concerning that the GPR image is essentially the representation of electromagnetic (EM) wave and propagation time, and to preserve both the subsurface background and objects' details, the normal GPR image is segmented and then fused with simulated GPR images that contain different kinds of objects to generate the synthetic data for the detection area based on the wavelet decompositions. Pre-trained CNNs could then be fine-tuned with the synthetic data, and utilized to extract features of segmented GPR images subsequently obtained in the detection area. The extracted features could be classified by the one-class learning algorithm in the feature space without pre-set anomaly types or numbers. The conducted experiments demonstrate that fine-tuning the pre-trained CNN with the proposed synthetic data could effectively improve the feature extraction of the network for the objects in the detection area. Besides, the proposed method requires only a section of normal data that could be easily obtained in the detection area, and could also meet the timeliness requirements in practical applications.
Submission history
From: Xiren Zhou [view email][v1] Fri, 21 Oct 2022 09:25:15 UTC (9,458 KB)
[v2] Tue, 22 Nov 2022 01:47:19 UTC (9,013 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.