Computer Science > Data Structures and Algorithms
[Submitted on 15 Oct 2022]
Title:A Nearly Optimal Size Coreset Algorithm with Nearly Linear Time
View PDFAbstract:A coreset is a point set containing information about geometric properties of a larger point set. A series of previous works show that in many machine learning problems, especially in clustering problems, coreset could be very useful to build efficient algorithms. Two main measures of an coreset construction algorithm's performance are the running time of the algorithm and the size of the coreset output by the algorithm. In this paper we study the construction of coresets for the $(k,z)$-clustering problem, which is a generalization of $k$-means and $k$-median problem. By properly designing a sketching-based distance estimation data structure, we propose faster algorithms that construct coresets with matching size of the state-of-the-art results.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.