Computer Science > Machine Learning
[Submitted on 15 Oct 2022]
Title:D.MCA: Outlier Detection with Explicit Micro-Cluster Assignments
View PDFAbstract:How can we detect outliers, both scattered and clustered, and also explicitly assign them to respective micro-clusters, without knowing apriori how many micro-clusters exist? How can we perform both tasks in-house, i.e., without any post-hoc processing, so that both detection and assignment can benefit simultaneously from each other? Presenting outliers in separate micro-clusters is informative to analysts in many real-world applications. However, a naïve solution based on post-hoc clustering of the outliers detected by any existing method suffers from two main drawbacks: (a) appropriate hyperparameter values are commonly unknown for clustering, and most algorithms struggle with clusters of varying shapes and densities; (b) detection and assignment cannot benefit from one another. In this paper, we propose this http URL to $\underline{D}$etect outliers with explicit $\underline{M}$icro-$\underline{C}$luster $\underline{A}$ssignment. Our method performs both detection and assignment iteratively, and in-house, by using a novel strategy that prunes entire micro-clusters out of the training set to improve the performance of the detection. It also benefits from a novel strategy that avoids clustered outliers to mask each other, which is a well-known problem in the literature. Also, this http URL is designed to be robust to a critical hyperparameter by employing a hyperensemble "warm up" phase. Experiments performed on 16 real-world and synthetic datasets demonstrate that this http URL outperforms 8 state-of-the-art competitors, especially on the explicit outlier micro-cluster assignment task.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.