Computer Science > Computation and Language
[Submitted on 14 Oct 2022 (v1), last revised 2 Oct 2023 (this version, v2)]
Title:Query Rewriting for Effective Misinformation Discovery
View PDFAbstract:We propose a novel system to help fact-checkers formulate search queries for known misinformation claims and effectively search across multiple social media platforms. We introduce an adaptable rewriting strategy, where editing actions for queries containing claims (e.g., swap a word with its synonym; change verb tense into present simple) are automatically learned through offline reinforcement learning. Our model uses a decision transformer to learn a sequence of editing actions that maximizes query retrieval metrics such as mean average precision. We conduct a series of experiments showing that our query rewriting system achieves a relative increase in the effectiveness of the queries of up to 42%, while producing editing action sequences that are human interpretable.
Submission history
From: Ashkan Kazemi [view email][v1] Fri, 14 Oct 2022 02:34:12 UTC (7,585 KB)
[v2] Mon, 2 Oct 2023 20:48:41 UTC (6,849 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.