Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Oct 2022]
Title:Latency-aware Spatial-wise Dynamic Networks
View PDFAbstract:Spatial-wise dynamic convolution has become a promising approach to improving the inference efficiency of deep networks. By allocating more computation to the most informative pixels, such an adaptive inference paradigm reduces the spatial redundancy in image features and saves a considerable amount of unnecessary computation. However, the theoretical efficiency achieved by previous methods can hardly translate into a realistic speedup, especially on the multi-core processors (e.g. GPUs). The key challenge is that the existing literature has only focused on designing algorithms with minimal computation, ignoring the fact that the practical latency can also be influenced by scheduling strategies and hardware properties. To bridge the gap between theoretical computation and practical efficiency, we propose a latency-aware spatial-wise dynamic network (LASNet), which performs coarse-grained spatially adaptive inference under the guidance of a novel latency prediction model. The latency prediction model can efficiently estimate the inference latency of dynamic networks by simultaneously considering algorithms, scheduling strategies, and hardware properties. We use the latency predictor to guide both the algorithm design and the scheduling optimization on various hardware platforms. Experiments on image classification, object detection and instance segmentation demonstrate that the proposed framework significantly improves the practical inference efficiency of deep networks. For example, the average latency of a ResNet-101 on the ImageNet validation set could be reduced by 36% and 46% on a server GPU (Nvidia Tesla-V100) and an edge device (Nvidia Jetson TX2 GPU) respectively without sacrificing the accuracy. Code is available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.