Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Oct 2022]
Title:Robust Human Matting via Semantic Guidance
View PDFAbstract:Automatic human matting is highly desired for many real applications. We investigate recent human matting methods and show that common bad cases happen when semantic human segmentation fails. This indicates that semantic understanding is crucial for robust human matting. From this, we develop a fast yet accurate human matting framework, named Semantic Guided Human Matting (SGHM). It builds on a semantic human segmentation network and introduces a light-weight matting module with only marginal computational cost. Unlike previous works, our framework is data efficient, which requires a small amount of matting ground-truth to learn to estimate high quality object mattes. Our experiments show that trained with merely 200 matting images, our method can generalize well to real-world datasets, and outperform recent methods on multiple benchmarks, while remaining efficient. Considering the unbearable labeling cost of matting data and widely available segmentation data, our method becomes a practical and effective solution for the task of human matting. Source code is available at this https URL.
Submission history
From: Xiangguang Chen [view email][v1] Tue, 11 Oct 2022 07:25:33 UTC (24,849 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.