Computer Science > Machine Learning
[Submitted on 6 Oct 2022 (v1), last revised 12 Oct 2022 (this version, v2)]
Title:On Optimal Learning Under Targeted Data Poisoning
View PDFAbstract:Consider the task of learning a hypothesis class $\mathcal{H}$ in the presence of an adversary that can replace up to an $\eta$ fraction of the examples in the training set with arbitrary adversarial examples. The adversary aims to fail the learner on a particular target test point $x$ which is known to the adversary but not to the learner. In this work we aim to characterize the smallest achievable error $\epsilon=\epsilon(\eta)$ by the learner in the presence of such an adversary in both realizable and agnostic settings. We fully achieve this in the realizable setting, proving that $\epsilon=\Theta(\mathtt{VC}(\mathcal{H})\cdot \eta)$, where $\mathtt{VC}(\mathcal{H})$ is the VC dimension of $\mathcal{H}$. Remarkably, we show that the upper bound can be attained by a deterministic learner. In the agnostic setting we reveal a more elaborate landscape: we devise a deterministic learner with a multiplicative regret guarantee of $\epsilon \leq C\cdot\mathtt{OPT} + O(\mathtt{VC}(\mathcal{H})\cdot \eta)$, where $C > 1$ is a universal numerical constant. We complement this by showing that for any deterministic learner there is an attack which worsens its error to at least $2\cdot \mathtt{OPT}$. This implies that a multiplicative deterioration in the regret is unavoidable in this case. Finally, the algorithms we develop for achieving the optimal rates are inherently improper. Nevertheless, we show that for a variety of natural concept classes, such as linear classifiers, it is possible to retain the dependence $\epsilon=\Theta_{\mathcal{H}}(\eta)$ by a proper algorithm in the realizable setting. Here $\Theta_{\mathcal{H}}$ conceals a polynomial dependence on $\mathtt{VC}(\mathcal{H})$.
Submission history
From: Idan Mehalel [view email][v1] Thu, 6 Oct 2022 06:49:48 UTC (73 KB)
[v2] Wed, 12 Oct 2022 17:06:05 UTC (75 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.