Computer Science > Networking and Internet Architecture
[Submitted on 4 Oct 2022]
Title:Optimizing Vehicle-to-Edge Mapping with Load Balancing for Attack-Resilience in IoV
View PDFAbstract:Attack-resilience is essential to maintain continuous service availability in Internet of Vehicles (IoV) where critical tasks are carried out. In this paper, we address the problem of service outage due to attacks on the edge network and propose an attack-resilient mapping of vehicles to edge nodes that host different types of service instances considering resource efficiency and delay. The distribution of service requests (of an attack-affected edge node) to multiple attack-free edge nodes is performed with an optimal vehicle-to-edge (V2E) mapping. The optimal mapping aims to improve the user experience with minimal delay while considering fair usage of edge capacities and balanced load upon a failure over different edge nodes. The proposed mapping solution is used within a deep reinforcement learning (DRL) based framework to effectively deal with the dynamism in service requests and vehicle mobility. We demonstrate the effectiveness of the proposed mapping approach through extensive simulation results using real-world vehicle mobility datasets from three cities.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.