Computer Science > Cryptography and Security
[Submitted on 3 Oct 2022]
Title:MultiGuard: Provably Robust Multi-label Classification against Adversarial Examples
View PDFAbstract:Multi-label classification, which predicts a set of labels for an input, has many applications. However, multiple recent studies showed that multi-label classification is vulnerable to adversarial examples. In particular, an attacker can manipulate the labels predicted by a multi-label classifier for an input via adding carefully crafted, human-imperceptible perturbation to it. Existing provable defenses for multi-class classification achieve sub-optimal provable robustness guarantees when generalized to multi-label classification. In this work, we propose MultiGuard, the first provably robust defense against adversarial examples to multi-label classification. Our MultiGuard leverages randomized smoothing, which is the state-of-the-art technique to build provably robust classifiers. Specifically, given an arbitrary multi-label classifier, our MultiGuard builds a smoothed multi-label classifier via adding random noise to the input. We consider isotropic Gaussian noise in this work. Our major theoretical contribution is that we show a certain number of ground truth labels of an input are provably in the set of labels predicted by our MultiGuard when the $\ell_2$-norm of the adversarial perturbation added to the input is bounded. Moreover, we design an algorithm to compute our provable robustness guarantees. Empirically, we evaluate our MultiGuard on VOC 2007, MS-COCO, and NUS-WIDE benchmark datasets. Our code is available at: \url{this https URL}
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.