Computer Science > Machine Learning
[Submitted on 3 Oct 2022 (v1), last revised 4 Oct 2022 (this version, v2)]
Title:Relational program synthesis with numerical reasoning
View PDFAbstract:Program synthesis approaches struggle to learn programs with numerical values. An especially difficult problem is learning continuous values over multiple examples, such as intervals. To overcome this limitation, we introduce an inductive logic programming approach which combines relational learning with numerical reasoning. Our approach, which we call NUMSYNTH, uses satisfiability modulo theories solvers to efficiently learn programs with numerical values. Our approach can identify numerical values in linear arithmetic fragments, such as real difference logic, and from infinite domains, such as real numbers or integers. Our experiments on four diverse domains, including game playing and program synthesis, show that our approach can (i) learn programs with numerical values from linear arithmetical reasoning, and (ii) outperform existing approaches in terms of predictive accuracies and learning times.
Submission history
From: Céline Hocquette [view email][v1] Mon, 3 Oct 2022 08:41:04 UTC (6,167 KB)
[v2] Tue, 4 Oct 2022 08:40:14 UTC (6,167 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.