Electrical Engineering and Systems Science > Systems and Control
[Submitted on 30 Sep 2022 (v1), last revised 17 Jul 2023 (this version, v2)]
Title:Smart Meters Integration in Distribution System State Estimation with Collaborative Filtering and Deep Gaussian Process
View PDFAbstract:The problem of state estimations for electric distribution system is considered. A collaborative filtering approach is proposed in this paper to integrate the slow time-scale smart meter measurements in the distribution system state estimation, in which the deep Gaussian process is incorporated to infer the fast time-scale pseudo measurements and avoid anomalies. Numerical tests have demonstrated the higher estimation accuracy of the proposed method.
Submission history
From: Yifei Xu [view email][v1] Fri, 30 Sep 2022 05:11:54 UTC (5,628 KB)
[v2] Mon, 17 Jul 2023 09:00:02 UTC (8,547 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.