Nonlinear Sciences > Exactly Solvable and Integrable Systems
[Submitted on 29 Aug 2022]
Title:Data-driven soliton mappings for integrable fractional nonlinear wave equations via deep learning with Fourier neural operator
View PDFAbstract:In this paper, we firstly extend the Fourier neural operator (FNO) to discovery the soliton mapping between two function spaces, where one is the fractional-order index space $\{\epsilon|\epsilon\in (0, 1)\}$ in the fractional integrable nonlinear wave equations while another denotes the solitonic solution function space. To be specific, the fractional nonlinear Schrödinger (fNLS), fractional Korteweg-de Vries (fKdV), fractional modified Korteweg-de Vries (fmKdV) and fractional sine-Gordon (fsineG) equations proposed recently are studied in this paper. We present the train and evaluate progress by recording the train and test loss. To illustrate the accuracies, the data-driven solitons are also compared to the exact solutions. Moreover, we consider the influences of several critical factors (e.g., activation functions containing Relu$(x)$, Sigmoid$(x)$, Swish$(x)$ and $x\tanh(x)$, depths of fully connected layer) on the performance of the FNO algorithm. We also use a new activation function, namely, $x\tanh(x)$, which is not used in the field of deep learning. The results obtained in this paper may be useful to further understand the neural networks in the fractional integrable nonlinear wave systems and the mappings between two spaces.
Current browse context:
nlin.SI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.