Computer Science > Robotics
[Submitted on 28 Sep 2022]
Title:Hierarchical Integration of Model Predictive and Fuzzy Logic Control for Combined Coverage and Target-Oriented Search-and-Rescue via Robots with Imperfect Sensors
View PDFAbstract:Search-and-rescue (SaR) in unknown environments requires precise, optimal, and fast decisions. Robots are promising candidates for autonomously performing SaR tasks in unknown environments. While humans use their heuristics to effectively deal with uncertainties, optimisation of multiple objectives in the presence of physical and control constraints is a mathematical challenge that requires machine computations. Thus having both human-inspired and mathematical control capabilities is desired for SaR robots. Moreover, coordinating the decisions of robots with little computation cost in large-scale SaR missions is an open challenge. Finally, in real-life data perceived by SaR robots may be prone to uncertainties. We introduce a hierarchical multi-agent control architecture that exploits non-homogeneous and imperfect perception capabilities of SaR robots, as well as the computational efficiency and robustness to failure of decentralised control methods and global performance improvement of centralised control methods. The integrated structure of the proposed control framework allows to combine human-inspired and mathematical decision making methods in a coordinated and computationally efficient way. The results of various computer-based simulations show that while the area coverage of the proposed approach is comparable to existing heuristic methods that are particularly developed for coverage-oriented SaR, the efficiency of the introduced approach in locating the trapped victims is significantly higher. Furthermore, with comparable computation times, the proposed control approach successfully avoids potential conflicts that exist in non-cooperative methods. These results confirm that the proposed multi-agent control system is capable of combining coverage-oriented and target-oriented SaR in a balanced and coordinated way.
Submission history
From: Anahita Jamshidnejad [view email][v1] Wed, 28 Sep 2022 21:57:18 UTC (1,012 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.