Mathematics > Optimization and Control
[Submitted on 27 Sep 2022]
Title:Improving Primal Heuristics for Mixed Integer Programming Problems based on Problem Reduction: A Learning-based Approach
View PDFAbstract:In this paper, we propose a Bi-layer Predictionbased Reduction Branch (BP-RB) framework to speed up the process of finding a high-quality feasible solution for Mixed Integer Programming (MIP) problems. A graph convolutional network (GCN) is employed to predict binary variables' values. After that, a subset of binary variables is fixed to the predicted value by a greedy method conditioned on the predicted probabilities. By exploring the logical consequences, a learning-based problem reduction method is proposed, significantly reducing the variable and constraint sizes. With the reductive sub-MIP problem, the second layer GCN framework is employed to update the prediction for the remaining binary variables' values and to determine the selection of variables which are then used for branching to generate the Branch and Bound (B&B) tree. Numerical examples show that our BP-RB framework speeds up the primal heuristic and finds the feasible solution with high quality.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.