Computer Science > Emerging Technologies
[Submitted on 25 Sep 2022]
Title:Towards Efficient RRAM-based Quantized Neural Networks Hardware: State-of-the-art and Open Issues
View PDFAbstract:The increasing amount of data processed on edge and the demand for reducing the energy consumption for large neural network architectures have initiated the transition from traditional von Neumann architectures towards in-memory computing paradigms. Quantization is one of the methods to reduce power and computation requirements for neural networks by limiting bit precision. Resistive Random Access Memory (RRAM) devices are great candidates for Quantized Neural Networks (QNN) implementations. As the number of possible conductive states in RRAMs is limited, a certain level of quantization is always considered when designing RRAM-based neural networks. In this work, we provide a comprehensive analysis of state-of-the-art RRAM-based QNN implementations, showing where RRAMs stand in terms of satisfying the criteria of efficient QNN hardware. We cover hardware and device challenges related to QNNs and show the main unsolved issues and possible future research directions.
Submission history
From: Olga Krestinskaya [view email][v1] Sun, 25 Sep 2022 16:35:18 UTC (3,524 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.