Computer Science > Sound
[Submitted on 23 Sep 2022]
Title:UniKW-AT: Unified Keyword Spotting and Audio Tagging
View PDFAbstract:Within the audio research community and the industry, keyword spotting (KWS) and audio tagging (AT) are seen as two distinct tasks and research fields. However, from a technical point of view, both of these tasks are identical: they predict a label (keyword in KWS, sound event in AT) for some fixed-sized input audio segment. This work proposes UniKW-AT: An initial approach for jointly training both KWS and AT. UniKW-AT enhances the noise-robustness for KWS, while also being able to predict specific sound events and enabling conditional wake-ups on sound events. Our approach extends the AT pipeline with additional labels describing the presence of a keyword. Experiments are conducted on the Google Speech Commands V1 (GSCV1) and the balanced Audioset (AS) datasets. The proposed MobileNetV2 model achieves an accuracy of 97.53% on the GSCV1 dataset and an mAP of 33.4 on the AS evaluation set. Further, we show that significant noise-robustness gains can be observed on a real-world KWS dataset, greatly outperforming standard KWS approaches. Our study shows that KWS and AT can be merged into a single framework without significant performance degradation.
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.