Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Sep 2022]
Title:A Masked Bounding-Box Selection Based ResNet Predictor for Text Rotation Prediction
View PDFAbstract:The existing Optical Character Recognition (OCR) systems are capable of recognizing images with horizontal texts. However, when the rotation of the texts increases, it becomes harder to recognizing these texts. The performance of the OCR systems decreases. Thus predicting the rotations of the texts and correcting the images are important. Previous work mainly uses traditional Computer Vision methods like Hough Transform and Deep Learning methods like Convolutional Neural Network. However, all of these methods are prone to background noises commonly existing in general images with texts. To tackle this problem, in this work, we introduce a new masked bounding-box selection method, that incorporating the bounding box information into the system. By training a ResNet predictor to focus on the bounding box as the region of interest (ROI), the predictor learns to overlook the background noises. Evaluations on the text rotation prediction tasks show that our method improves the performance by a large margin.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.