Computer Science > Software Engineering
[Submitted on 20 Sep 2022]
Title:Using Word Embedding and Convolution Neural Network for Bug Triaging by Considering Design Flaws
View PDFAbstract:Resolving bugs in the maintenance phase of software is a complicated task. Bug assignment is one of the main tasks for resolving bugs. Some Bugs cannot be fixed properly without making design decisions and have to be assigned to designers, rather than programmers, to avoid emerging bad smells that may cause subsequent bug reports. Hence, it is important to refer some bugs to the designer to check the possible design flaws. Based on our best knowledge, there are a few works that have considered referring bugs to designers. Hence, this issue is considered in this work. In this paper, a dataset is created, and a CNN-based model is proposed to predict the need for assigning a bug to a designer by learning the peculiarities of bug reports effective in creating bad smells in the code. The features of each bug are extracted from CNN based on its textual features, such as a summary and description. The number of bad samples added to it in the fixing process using the PMD tool determines the bug tag. The summary and description of the new bug are given to the model and the model predicts the need to refer to the designer. The accuracy of 75% (or more) was achieved for datasets with a sufficient number of samples for deep learning-based model training. A model is proposed to predict bug referrals to the designer. The efficiency of the model in predicting referrals to the designer at the time of receiving the bug report was demonstrated by testing the model on 10 projects.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.