Mathematics > Logic
[Submitted on 18 Sep 2022]
Title:Algebraic semantics for one-variable lattice-valued logics
View PDFAbstract:The one-variable fragment of any first-order logic may be considered as a modal logic, where the universal and existential quantifiers are replaced by a box and diamond modality, respectively. In several cases, axiomatizations of algebraic semantics for these logics have been obtained: most notably, for the modal counterparts S5 and MIPC of the one-variable fragments of first-order classical logic and intuitionistic logic, respectively. Outside the setting of first-order intermediate logics, however, a general approach is lacking. This paper provides the basis for such an approach in the setting of first-order lattice-valued logics, where formulas are interpreted in algebraic structures with a lattice reduct. In particular, axiomatizations are obtained for modal counterparts of one-variable fragments of a broad family of these logics by generalizing a functional representation theorem of Bezhanishvili and Harding for monadic Heyting algebras. An alternative proof-theoretic proof is also provided for one-variable fragments of first-order substructural logics that have a cut-free sequent calculus and admit a certain bounded interpolation property.
Current browse context:
math.LO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.