Computer Science > Information Retrieval
[Submitted on 16 Sep 2022]
Title:Recursive Attentive Methods with Reused Item Representations for Sequential Recommendation
View PDFAbstract:Sequential recommendation aims to recommend the next item of users' interest based on their historical interactions. Recently, the self-attention mechanism has been adapted for sequential recommendation, and demonstrated state-of-the-art performance. However, in this manuscript, we show that the self-attention-based sequential recommendation methods could suffer from the localization-deficit issue. As a consequence, in these methods, over the first few blocks, the item representations may quickly diverge from their original representations, and thus, impairs the learning in the following blocks. To mitigate this issue, in this manuscript, we develop a recursive attentive method with reused item representations (RAM) for sequential recommendation. We compare RAM with five state-of-the-art baseline methods on six public benchmark datasets. Our experimental results demonstrate that RAM significantly outperforms the baseline methods on benchmark datasets, with an improvement of as much as 11.3%. Our stability analysis shows that RAM could enable deeper and wider models for better performance. Our run-time performance comparison signifies that RAM could also be more efficient on benchmark datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.