Computer Science > Computer Vision and Pattern Recognition
[Submitted on 14 Sep 2022 (v1), last revised 3 Dec 2022 (this version, v2)]
Title:Point Cloud Registration-Driven Robust Feature Matching for 3D Siamese Object Tracking
View PDFAbstract:Learning robust feature matching between the template and search area is crucial for 3D Siamese tracking. The core of Siamese feature matching is how to assign high feature similarity on the corresponding points between the template and search area for precise object localization. In this paper, we propose a novel point cloud registration-driven Siamese tracking framework, with the intuition that spatially aligned corresponding points (via 3D registration) tend to achieve consistent feature representations. Specifically, our method consists of two modules, including a tracking-specific nonlocal registration module and a registration-aided Sinkhorn template-feature aggregation module. The registration module targets at the precise spatial alignment between the template and search area. The tracking-specific spatial distance constraint is proposed to refine the cross-attention weights in the nonlocal module for discriminative feature learning. Then, we use the weighted SVD to compute the rigid transformation between the template and search area, and align them to achieve the desired spatially aligned corresponding points. For the feature aggregation model, we formulate the feature matching between the transformed template and search area as an optimal transport problem and utilize the Sinkhorn optimization to search for the outlier-robust matching solution. Also, a registration-aided spatial distance map is built to improve the matching robustness in indistinguishable regions (e.g., smooth surface). Finally, guided by the obtained feature matching map, we aggregate the target information from the template into the search area to construct the target-specific feature, which is then fed into a CenterPoint-like detection head for object localization. Extensive experiments on KITTI, NuScenes and Waymo datasets verify the effectiveness of our proposed method.
Submission history
From: Haobo Jiang [view email][v1] Wed, 14 Sep 2022 03:25:04 UTC (12,169 KB)
[v2] Sat, 3 Dec 2022 10:01:13 UTC (12,168 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.