Computer Science > Software Engineering
[Submitted on 13 Sep 2022]
Title:Does Road Diversity Really Matter in Testing Automated Driving Systems? -- A Registered Report
View PDFAbstract:Background/Context. The use of automated driving systems (ADSs) in the real world requires rigorous testing to ensure safety. To increase trust, ADSs should be tested on a large set of diverse road scenarios. Literature suggests that if a vehicle is driven along a set of geometrically diverse roads-measured using various diversity measures (DMs)-it will react in a wide range of behaviours, thereby increasing the chances of observing failures (if any), or strengthening the confidence in its safety, if no failures are observed. To the best of our knowledge, however, this assumption has never been tested before, nor have road DMs been assessed for their properties. Objective/Aim. Our goal is to perform an exploratory study on 47 currently used and new, potentially promising road DMs. Specifically, our research questions look into the road DMs themselves, to analyse their properties (e.g. monotonicity, computation efficiency), and to test correlation between DMs. Furthermore, we look at the use of road DMs to investigate whether the assumption that diverse test suites of roads expose diverse driving behaviour holds. Method. Our empirical analysis relies on a state-of-the-art, open-source ADSs testing infrastructure and uses a data set containing over 97,000 individual road geometries and matching simulation data that were collected using two driving agents. By sampling random test suites of various sizes and measuring their roads' geometric diversity, we study road DMs properties, the correlation between road DMs, and the correlation between road DMs and the observed behaviour.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.