Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Sep 2022]
Title:Automatic Detection of Sentimentality from Facial Expressions
View PDFAbstract:Emotion recognition has received considerable attention from the Computer Vision community in the last 20 years. However, most of the research focused on analyzing the six basic emotions (e.g. joy, anger, surprise), with a limited work directed to other affective states. In this paper, we tackle sentimentality (strong feeling of heartwarming or nostalgia), a new emotional state that has few works in the literature, and no guideline defining its facial markers. To this end, we first collect a dataset of 4.9K videos of participants watching some sentimental and non-sentimental ads, and then we label the moments evoking sentimentality in the ads. Second, we use the ad-level labels and the facial Action Units (AUs) activation across different frames for defining some weak frame-level sentimentality labels. Third, we train a Multilayer Perceptron (MLP) using the AUs activation for sentimentality detection. Finally, we define two new ad-level metrics for evaluating our model performance. Quantitative and qualitative results show promising results for sentimentality detection. To the best of our knowledge this is the first work to address the problem of sentimentality detection.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.