Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 8 Sep 2022]
Title:T$^2$LR-Net: An Unrolling Reconstruction Network Learning Transformed Tensor Low-Rank prior for Dynamic MR Imaging
View PDFAbstract:While the methods exploiting the tensor low-rank prior are booming in high-dimensional data processing and have obtained satisfying performance, their applications in dynamic magnetic resonance (MR) image reconstruction are limited. In this paper, we concentrate on the tensor singular value decomposition (t-SVD), which is based on the Fast Fourier Transform (FFT) and only provides the definite and limited tensor low-rank prior in the FFT domain, heavily reliant upon how closely the data and the FFT domain match up. By generalizing the FFT into an arbitrary unitary transformation of the transformed t-SVD and proposing the transformed tensor nuclear norm (TTNN), we introduce a flexible model based on TTNN with the ability to exploit the tensor low-rank prior of a transformed domain in a larger transformation space and elaborately design an iterative optimization algorithm based on the alternating direction method of multipliers (ADMM), which is further unrolled into a model-based deep unrolling reconstruction network to learn the transformed tensor low-rank prior (T$^2$LR-Net). The convolutional neural network (CNN) is incorporated within the T$^2$LR-Net to learn the best-matched transform from the dynamic MR image dataset. The unrolling reconstruction network also provides a new perspective on the low-rank prior utilization by exploiting the low-rank prior in the CNN-extracted feature domain. Experimental results on two cardiac cine MR datasets demonstrate that the proposed framework can provide improved recovery results compared with the state-of-the-art optimization-based and unrolling network-based methods.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.