Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Aug 2022 (v1), last revised 15 Nov 2022 (this version, v2)]
Title:Two-person Graph Convolutional Network for Skeleton-based Human Interaction Recognition
View PDFAbstract:Graph convolutional networks (GCNs) have been the predominant methods in skeleton-based human action recognition, including human-human interaction recognition. However, when dealing with interaction sequences, current GCN-based methods simply split the two-person skeleton into two discrete graphs and perform graph convolution separately as done for single-person action classification. Such operations ignore rich interactive information and hinder effective spatial inter-body relationship modeling. To overcome the above shortcoming, we introduce a novel unified two-person graph to represent inter-body and intra-body correlations between joints. Experiments show accuracy improvements in recognizing both interactions and individual actions when utilizing the proposed two-person graph topology. In addition, We design several graph labeling strategies to supervise the model to learn discriminant spatial-temporal interactive features. Finally, we propose a two-person graph convolutional network (2P-GCN). Our model achieves state-of-the-art results on four benchmarks of three interaction datasets: SBU, interaction subsets of NTU-RGB+D and NTU-RGB+D 120.
Submission history
From: Zhengcen Li [view email][v1] Fri, 12 Aug 2022 08:50:15 UTC (1,425 KB)
[v2] Tue, 15 Nov 2022 03:14:42 UTC (2,316 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.