Mathematics > Probability
[Submitted on 12 Aug 2022]
Title:Noise stability on the Boolean hypercube via a renormalized Brownian motion
View PDFAbstract:We consider a variant of the classical notion of noise on the Boolean hypercube which gives rise to a new approach to inequalities regarding noise stability. We use this approach to give a new proof of the Majority is Stablest theorem by Mossel, O'Donnell, and Oleszkiewicz, improving the dependence of the bound on the maximal influence of the function from logarithmic to polynomial. We also show that a variant of the conjecture by Courtade and Kumar regarding the most informative Boolean function, where the classical noise is replaced by our notion, holds true. Our approach is based on a stochastic construction that we call the renormalized Brownian motion, which facilitates the use of inequalities in Gaussian space in the analysis of Boolean functions.
Current browse context:
math.PR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.