Computer Science > Machine Learning
[Submitted on 10 Aug 2022]
Title:Adaptive Learning Rates for Faster Stochastic Gradient Methods
View PDFAbstract:In this work, we propose new adaptive step size strategies that improve several stochastic gradient methods. Our first method (StoPS) is based on the classical Polyak step size (Polyak, 1987) and is an extension of the recent development of this method for the stochastic optimization-SPS (Loizou et al., 2021), and our second method, denoted GraDS, rescales step size by "diversity of stochastic gradients". We provide a theoretical analysis of these methods for strongly convex smooth functions and show they enjoy deterministic-like rates despite stochastic gradients. Furthermore, we demonstrate the theoretical superiority of our adaptive methods on quadratic objectives. Unfortunately, both StoPS and GraDS depend on unknown quantities, which are only practical for the overparametrized models. To remedy this, we drop this undesired dependence and redefine StoPS and GraDS to StoP and GraD, respectively. We show that these new methods converge linearly to the neighbourhood of the optimal solution under the same assumptions. Finally, we corroborate our theoretical claims by experimental validation, which reveals that GraD is particularly useful for deep learning optimization.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.