Computer Science > Cryptography and Security
[Submitted on 7 Aug 2022]
Title:HWGN2: Side-channel Protected Neural Networks through Secure and Private Function Evaluation
View PDFAbstract:Recent work has highlighted the risks of intellectual property (IP) piracy of deep learning (DL) models from the side-channel leakage of DL hardware accelerators. In response, to provide side-channel leakage resiliency to DL hardware accelerators, several approaches have been proposed, mainly borrowed from the methodologies devised for cryptographic implementations. Therefore, as expected, the same challenges posed by the complex design of such countermeasures should be dealt with. This is despite the fact that fundamental cryptographic approaches, specifically secure and private function evaluation, could potentially improve the robustness against side-channel leakage. To examine this and weigh the costs and benefits, we introduce hardware garbled NN (HWGN2), a DL hardware accelerator implemented on FPGA. HWGN2 also provides NN designers with the flexibility to protect their IP in real-time applications, where hardware resources are heavily constrained, through a hardware-communication cost trade-off. Concretely, we apply garbled circuits, implemented using a MIPS architecture that achieves up to 62.5x fewer logical and 66x less memory utilization than the state-of-the-art approaches at the price of communication overhead. Further, the side-channel resiliency of HWGN2 is demonstrated by employing the test vector leakage assessment (TVLA) test against both power and electromagnetic side-channels. This is in addition to the inherent feature of HWGN2: it ensures the privacy of users' input, including the architecture of NNs. We also demonstrate a natural extension to the malicious security modeljust as a by-product of our implementation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.