Mathematics > Numerical Analysis
[Submitted on 2 Aug 2022 (v1), last revised 14 Sep 2022 (this version, v3)]
Title:Global-in-time $H^1$-stability of L2-1$_σ$ method on general nonuniform meshes for subdiffusion equation
View PDFAbstract:In this work the L2-1$_\sigma$ method on general nonuniform meshes is studied for the subdiffusion equation. When the time step ratio is no less than $0.475329$, a bilinear form associated with the L2-1$_\sigma$ fractional-derivative operator is proved to be positive semidefinite and a new global-in-time $H^1$-stability of L2-1$_\sigma$ schemes is then derived under simple assumptions on the initial condition and the source term. In addition, the sharp $L^2$-norm convergence is proved under the constraint that the time step ratio is no less than $0.475329$.
Submission history
From: Chaoyu Quan [view email][v1] Tue, 2 Aug 2022 11:57:00 UTC (534 KB)
[v2] Mon, 12 Sep 2022 06:22:56 UTC (553 KB)
[v3] Wed, 14 Sep 2022 07:02:22 UTC (260 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.