Computer Science > Cryptography and Security
[Submitted on 2 Aug 2022]
Title:Improvement of algebraic attacks for solving superdetermined MinRank instances
View PDFAbstract:The MinRank (MR) problem is a computational problem that arises in many cryptographic applications. In Verbel et al. (PQCrypto 2019), the authors introduced a new way to solve superdetermined instances of the MinRank problem, starting from the bilinear Kipnis-Shamir (KS) modeling. They use linear algebra on specific Macaulay matrices, considering only multiples of the initial equations by one block of variables, the so called ''kernel'' variables. Later, Bardet et al. (Asiacrypt 2020) introduced a new Support Minors modeling (SM), that consider the Pl{ü}cker coordinates associated to the kernel variables, i.e. the maximal minors of the Kernel matrix in the KS modeling. In this paper, we give a complete algebraic explanation of the link between the (KS) and (SM) modelings (for any instance). We then show that superdetermined MinRank instances can be seen as easy instances of the SM modeling. In particular, we show that performing computation at the smallest possible degree (the ''first degree fall'') and the smallest possible number of variables is not always the best strategy. We give complexity estimates of the attack for generic random this http URL apply those results to the DAGS cryptosystem, that was submitted to the first round of the NIST standardization process. We show that the algebraic attack from Barelli and Couvreur (Asiacrypt 2018), improved in Bardet et al. (CBC 2019), is a particular superdetermined MinRank this http URL, the instances are not generic, but we show that it is possible to analyse the particular instances from DAGS and provide a way toselect the optimal parameters (number of shortened positions) to solve a particular instance.
Submission history
From: Magali Bardet [view email] [via CCSD proxy][v1] Tue, 2 Aug 2022 13:19:02 UTC (19 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.