Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Jul 2022 (v1), last revised 3 Jun 2023 (this version, v3)]
Title:D3Former: Debiased Dual Distilled Transformer for Incremental Learning
View PDFAbstract:In class incremental learning (CIL) setting, groups of classes are introduced to a model in each learning phase. The goal is to learn a unified model performant on all the classes observed so far. Given the recent popularity of Vision Transformers (ViTs) in conventional classification settings, an interesting question is to study their continual learning behaviour. In this work, we develop a Debiased Dual Distilled Transformer for CIL dubbed $\textrm{D}^3\textrm{Former}$. The proposed model leverages a hybrid nested ViT design to ensure data efficiency and scalability to small as well as large datasets. In contrast to a recent ViT based CIL approach, our $\textrm{D}^3\textrm{Former}$ does not dynamically expand its architecture when new tasks are learned and remains suitable for a large number of incremental tasks. The improved CIL behaviour of $\textrm{D}^3\textrm{Former}$ owes to two fundamental changes to the ViT design. First, we treat the incremental learning as a long-tail classification problem where the majority samples from new classes vastly outnumber the limited exemplars available for old classes. To avoid the bias against the minority old classes, we propose to dynamically adjust logits to emphasize on retaining the representations relevant to old tasks. Second, we propose to preserve the configuration of spatial attention maps as the learning progresses across tasks. This helps in reducing catastrophic forgetting by constraining the model to retain the attention on the most discriminative regions. $\textrm{D}^3\textrm{Former}$ obtains favorable results on incremental versions of CIFAR-100, MNIST, SVHN, and ImageNet datasets. Code is available at this https URL
Submission history
From: Rushali Grandhe [view email][v1] Mon, 25 Jul 2022 08:54:52 UTC (37,836 KB)
[v2] Tue, 6 Sep 2022 12:10:19 UTC (7,451 KB)
[v3] Sat, 3 Jun 2023 11:48:54 UTC (7,300 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.