Computer Science > Databases
[Submitted on 16 Jul 2022 (v1), last revised 2 Aug 2022 (this version, v2)]
Title:Building Trust: Lessons from the Technion-Rambam Machine Learning in Healthcare Datathon Event
View PDFAbstract:A datathon is a time-constrained competition involving data science applied to a specific problem. In the past decade, datathons have been shown to be a valuable bridge between fields and expertise . Biomedical data analysis represents a challenging area requiring collaboration between engineers, biologists and physicians to gain a better understanding of patient physiology and of guide decision processes for diagnosis, prognosis and therapeutic interventions to improve care practice. Here, we reflect on the outcomes of an event that we organized in Israel at the end of March 2022 between the MIT Critical Data group, Rambam Health Care Campus (Rambam) and the Technion Israel Institute of Technology (Technion) in Haifa. Participants were asked to complete a survey about their skills and interests, which enabled us to identify current needs in machine learning training for medical problem applications. This work describes opportunities and limitations in medical data science in the Israeli context.
Submission history
From: Jonathan Sobel [view email][v1] Sat, 16 Jul 2022 14:53:56 UTC (6,014 KB)
[v2] Tue, 2 Aug 2022 12:42:16 UTC (6,023 KB)
Current browse context:
cs.DB
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.