Computer Science > Machine Learning
[Submitted on 15 Jul 2022]
Title:Strict baselines for Covid-19 forecasting and ML perspective for USA and Russia
View PDFAbstract:Currently, the evolution of Covid-19 allows researchers to gather the datasets accumulated over 2 years and to use them in predictive analysis. In turn, this makes it possible to assess the efficiency potential of more complex predictive models, including neural networks with different forecast horizons. In this paper, we present the results of a consistent comparative study of different types of methods for predicting the dynamics of the spread of Covid-19 based on regional data for two countries: the United States and Russia. We used well-known statistical methods (e.g., Exponential Smoothing), a "tomorrow-as-today" approach, as well as a set of classic machine learning models trained on data from individual regions. Along with them, a neural network model based on Long short-term memory (LSTM) layers was considered, the training samples of which aggregate data from all regions of two countries: the United States and Russia. Efficiency evaluation was carried out using cross-validation according to the MAPE metric. It is shown that for complicated periods characterized by a large increase in the number of confirmed daily cases, the best results are shown by the LSTM model trained on all regions of both countries, showing an average Mean Absolute Percentage Error (MAPE) of 18%, 30%, 37% for Russia and 31%, 41%, 50% for US for predictions at forecast horizons of 14, 28, and 42 days, respectively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.